If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6k2 + -13k + -6 = 0 Reorder the terms: -6 + -13k + 6k2 = 0 Solving -6 + -13k + 6k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -1 + -2.166666667k + k2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + -2.166666667k + 1 + k2 = 0 + 1 Reorder the terms: -1 + 1 + -2.166666667k + k2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -2.166666667k + k2 = 0 + 1 -2.166666667k + k2 = 0 + 1 Combine like terms: 0 + 1 = 1 -2.166666667k + k2 = 1 The k term is -2.166666667k. Take half its coefficient (-1.083333334). Square it (1.173611113) and add it to both sides. Add '1.173611113' to each side of the equation. -2.166666667k + 1.173611113 + k2 = 1 + 1.173611113 Reorder the terms: 1.173611113 + -2.166666667k + k2 = 1 + 1.173611113 Combine like terms: 1 + 1.173611113 = 2.173611113 1.173611113 + -2.166666667k + k2 = 2.173611113 Factor a perfect square on the left side: (k + -1.083333334)(k + -1.083333334) = 2.173611113 Calculate the square root of the right side: 1.474317168 Break this problem into two subproblems by setting (k + -1.083333334) equal to 1.474317168 and -1.474317168.Subproblem 1
k + -1.083333334 = 1.474317168 Simplifying k + -1.083333334 = 1.474317168 Reorder the terms: -1.083333334 + k = 1.474317168 Solving -1.083333334 + k = 1.474317168 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '1.083333334' to each side of the equation. -1.083333334 + 1.083333334 + k = 1.474317168 + 1.083333334 Combine like terms: -1.083333334 + 1.083333334 = 0.000000000 0.000000000 + k = 1.474317168 + 1.083333334 k = 1.474317168 + 1.083333334 Combine like terms: 1.474317168 + 1.083333334 = 2.557650502 k = 2.557650502 Simplifying k = 2.557650502Subproblem 2
k + -1.083333334 = -1.474317168 Simplifying k + -1.083333334 = -1.474317168 Reorder the terms: -1.083333334 + k = -1.474317168 Solving -1.083333334 + k = -1.474317168 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '1.083333334' to each side of the equation. -1.083333334 + 1.083333334 + k = -1.474317168 + 1.083333334 Combine like terms: -1.083333334 + 1.083333334 = 0.000000000 0.000000000 + k = -1.474317168 + 1.083333334 k = -1.474317168 + 1.083333334 Combine like terms: -1.474317168 + 1.083333334 = -0.390983834 k = -0.390983834 Simplifying k = -0.390983834Solution
The solution to the problem is based on the solutions from the subproblems. k = {2.557650502, -0.390983834}
| 64-3x=6x+20 | | 7/15-2/y | | 2x-8=4x-2+6x+6 | | x^3+13x^2+3x-20=0 | | -6k^2-13-6=0 | | x+16=-19 | | -5x+15=45 | | 20n^2+80=116n | | 5y+41=31 | | 6+7x=62 | | 9x^8-36x^5+45x-7= | | 7(x-6)+10=4(x-5) | | 5b+4c=-70 | | 5b+4c=-70 | | 2x^3-x-2x+1=0 | | 50x^2=115x-60 | | 40k+100=30k+120 | | 3(x+2)=5(x+6) | | -5+x+2=5+3x | | 2p^2+5p-16=-4 | | 7-7x=47-35x | | ln(2x-7)=5 | | 3+6x-4x=-3 | | 15a^2-22a-9=-4 | | 100m+48750=50500-175m | | 6+-x=15 | | 5x^2-12x-11=-2 | | 48+m=45 | | 4(x+7)=3(2x-4) | | -11r+-2=-24 | | 5x^2+6=14x+9 | | 17n=46 |